数学当中的基本常识有哪些-数学的基本内容包括

第三方分享代码
hacker 3年前 (2022-07-16) 黑客团队 117 4

目录介绍:

数学初中全部重要知识点有哪些?

数学初中全部重要知识点:

一、一元一次方程

1、只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

2、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。

3、一元一次方程解法的一般步骤:整理方程、去分母、去括号、移项、合并同类项、系数化为1。

二、解一元二次方程的步骤

1、配方法的步骤

先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式。

2、分解因式法的步骤

把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式。

3、公式法

就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c。

4、韦达定理

利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a。

也可以表示为x1+x2=-b/a,x1x2=c/a。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用。

5、一元一次方程根的情况

利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diaota”,而△=b2-4ac,这里可以分为3种情况:

(1)当△0时,一元二次方程有2个不相等的实数根。

(2)当△=0时,一元二次方程有2个相同的实数根。

(3)当△0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)。

三、有理数

1、定义:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。

2、数轴:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴。

3、相反数:相反数是一个数学术语,指绝对值相等,正负号相反的两个数互为相反数。

4、绝对值:绝对值是指一个数在数轴上所对应点到原点的距离。正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

5、有理数加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

(3)一个数同0相加,仍得这个数。

6、有理数的乘法

两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数与0相乘,积为0。例:0×1=0。

7、有理数的除法

除以一个不为0的数,等于乘这个数的倒数。

小学数学的基础知识有哪些

对于那些成绩较差的小学生来说,学习小学数学都有很大的难度,其实小学数学属于基础类的知识比较多,只要掌握一定的技巧还是比较容易掌握的.在小学,是一个需要养成良好习惯的时期,注重培养孩子的习惯和学习能力是重要的一方面,那小学数学有哪些技巧?

一、重视课内听讲,课后及时进行复习.

新知识的接受和数学能力的培养主要是在课堂上进行的,所以我们必须特别注意课堂学习的效率,寻找正确的学习方法.在课堂上,我们必须遵循教师的思想,积极制定以下步骤,思考和预测解决问题的思想与教师之间的差异.特别是,我们必须了解基本知识和基本学习技能,并及时审查它们以避免疑虑.首先,在进行各种练习之前,我们必须记住教师的知识点,正确理解各种公式的推理过程,并试着记住而不是采用"不确定的书籍阅读".勤于思考,对于一些问题试着用大脑去思考,认真分析问题,尝试自己解决问题.

二、多做习题,养成解决问题的好习惯.

如果你想学好数学,你需要提出更多问题,熟悉各种问题的解决问题的想法.首先,我们先从课本的题目为标准,反复练习基本知识,然后找一些课外活动,帮助开拓思路练习,提高自己的分析和掌握解决的规律.对于一些易于查找的问题,您可以准备一个用于收集的错题本,编写自己的想法来解决问题,在日常养成解决问题的好习惯.学会让自己高度集中精力,使大脑兴奋,快速思考,进入最佳状态并在考试中自由使用.

三、调整心态并正确对待考试.

首先,主要的重点应放在基础、基本技能、基本方法,因为大多数测试出于基本问题,较难的题目也是出自于基本.所以只有调整学习的心态,尽量让自己用一个清楚的头脑去解决问题,就没有太难的题目.考试前要多对习题进行演练,开阔思路,在保证真确的前提下提高做题的速度.对于简单的基础题目要拿出二十分的把握去做;难得题目要尽量去做对,使自己的水平能正常或者超常发挥.

由此可见小学数学的技巧就是多做练习题,掌握基本知识.另外就是心态,不能见考试就胆怯,调整心态很重要.所以大家可以遵循这些技巧,来提高自己的能力,使自己进入到数学的海洋中去.

高中数学知识点有哪些?

;     01

      高中数学是全国高中生学习的一门学科。包括《集合与函数》《三角函数》《不等式》《数列》《立体几何》《平面解析几何》等部分, 高中数学主要分为代数和几何两大部分。代数主要是一次函数,二次函数,反比例函数和三角函数。几何又分为平面解析几何和立体几何两大部分。

      一、 集合

      (1)集合的含义与表示

      1通过实例,了解集合的含义,体会元素与集合的“属于”关系。

      2能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。

      (2)集合间的基本关系

      1理解集合之间包含与相等的含义,能识别给定集合的子集。

      2在具体情境中,了解全集与空集的含义。

      (3)集合的基本运算

      1理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。

      2理解在给定集合中一个子集的补集的含义,会求给定子集的补集。

      3能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

      函数概念与基本初等函数:

      (1)函数

      1进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。

      2在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数。

      3了解简单的分段函数,并能简单应用。

      4通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义。

      5学会运用函数图象理解和研究函数的性质(参见例1)。

      (2)指数函数

      1(细胞的分裂,考古中所用的C的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景。

      2理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。

      3理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。

      4在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型。

      (3)对数函数

      1理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的产生历史以及对简化运算的作用。

      2通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点。

      3知道指数函数 与对数函数 互为反函数(a0,a≠1)。

      (4)幂函数

      通过实例,了解幂函数的概念;结合函数 的图象,了解它们的变化情况。

      (5)函数与方程

      1结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。

      2根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。

      (6)函数模型及其应用

      1利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。

      2收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。

      二、三角函数

      (1)任意角、弧度

      了解任意角的概念和弧度制,能进行弧度与角度的互化。

      (2)三角函数

      1借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义。

      2借助单位圆中的三角函数线推导出诱导公式( 的正弦、余弦、正切),能画出 的图象,了解三角函数的周期性。

      3借助图象理解正弦函数、余弦函数在 ,正切函数在 上的性质(如单调性、最大和最小值、图象与x轴交点等)。

      4理解同角三角函数的基本关系式:

      5结合具体实例,了解 的实际意义;能借助计算器或计算机画出 的图象,观察参数A,ω, 对函数图象变化的影响。

      6会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型。

      三、数列

      (1)数列的概念和简单表示法

      了解数列的概念和几种简单的表示方法(列表、图象、通项公式),了解数列是一种特殊函数。

      (2)等差数列、等比数列

      1理解等差数列、等比数列的概念。

      2探索并掌握等差数列、等比数列的通项公式与前n项和的公式。

      3能在具体的问题情境中,发现数列的等差关系或等比关系,并能用有关知识解决相应的问题(参见例1)。

      4体会等差数列、等比数列与一次函数、指数函数的关系。

      四、不等式

      (1)不等关系

      感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景。

      (2)一元二次不等式

      1经历从实际情境中抽象出一元二次不等式模型的过程。

      2通过函数图象了解一元二次不等式与相应函数、方程的联系。

      3会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图。

      (3)二元一次不等式组与简单线性规划问题

      1从实际情境中抽象出二元一次不等式组。

      2了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组。

      3从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决(。

      (4)基本不等式:

      1探索并了解基本不等式的证明过程。

      2会用基本不等式解决简单的最大(小)值问题。

      五、立体几何初步

      (1)空间几何体

      1利用实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。

      2能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会使用材料(如纸板)制作模型,会用斜二侧法画出它们的直观图。

      3通过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的不同表示形式。

      4完成实习作业,如画出某些建筑的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求)。

      5了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。

      (2)点、线、面之间的位置关系

      1借助长方体模型,在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面位置关系的定义,并了解如下可以作为推理依据的公理和定理。

      公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。

      公理2:过不在一条直线上的三点,有且只有一个平面。

      公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

      公理4:平行于同一条直线的两条直线平行。

      定理:空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补。

      2以立体几何的上述定义、公理和定理为出发点,通过直观感知、操作确认、思辨论证,认识和理解空间中线面平行、垂直的有关性质与判定。

      操作确认,归纳出以下判定定理。

      平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

      一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。

      一条直线与一个平面内的两条相交直线垂直,则该直线与此平面垂直。

      一个平面过另一个平面的垂线,则两个平面垂直。

      操作确认,归纳出以下性质定理,并加以证明。

      一条直线与一个平面平行,则过该直线的任一个平面与此平面的交线与该直线平行。

      两个平面平行,则任意一个平面与这两个平面相交所得的交线相互平行。

      垂直于同一个平面的两条直线平行。

      两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。

      3能运用已获得的结论证明一些空间位置关系的简单命题。

      平面解析几何初步:

      (1)直线与方程

      1在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素。

      2理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式。

      3能根据斜率判定两条直线平行或垂直。

      4根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系。

      5能用解方程组的方法求两直线的交点坐标。

      6探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。

      (2)圆与方程

      1回顾确定圆的几何要素,在平面直角坐标系中,探索并掌握圆的标准方程与一般方程。

      2能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系。

      3能用直线和圆的方程解决一些简单的问题。

      (3)在平面解析几何初步的学习过程中,体会用代数方法处理几何问题的思想。

      (4)空间直角坐标系

      1通过具体情境,感受建立空间直角坐标系的必要性,了解空间直角坐标系,会用空间直角坐标系刻画点的位置。

      2通过表示特殊长方体(所有棱分别与坐标轴平行)顶点的坐标,探索并得出空间两点间的距离公式。

初中数学基础知识点有哪些

初中数学基础知识大全:直角坐标系与点的位置

1. 直角坐标系中,点A(3,0)在y轴上。

2. 直角坐标系中,x轴上的任意点的横坐标为0。

3. 直角坐标系中,点A(1,1)在第一象限。

4. 直角坐标系中,点A(-1,1)在第二象限。

5. 直角坐标系中,点A(-1,-1)在第三象限。

6. 直角坐标系中,点A(1,-1)在第四象限。

初中数学基础知识大全:特殊三角函数值

1.cos30°=√3/2

2.sin2 60°+ cos2 60°= 1

3.2sin30°+ tan45°= 2

4.tan45°= 1

5.cos60°+ sin30°= 1

初中数学基础知识大全:圆的基本性质

1.半圆或直径所对的圆周角是直角。

2.任意一个三角形一定有一个外接圆.

3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。

4.在同圆或等圆中,相等的圆心角所对的弧相等。

5.同弧所对的圆周角等于圆心角的一半。

6.同圆或等圆的半径相等。

7.过三个点一定可以作一个圆。

8.长度相等的两条弧是等弧。

9.在同圆或等圆中,相等的圆心角所对的弧相等。

10.经过圆心平分弦的直径垂直于弦。

日常生活中的数学知识有哪些?

日常生活中的数学知识有如下:

1、抽屉原理:

如果我们去参加一场婚礼,人数超过367人,那么其中必然有生日相同的人(并非同年)。

这就是抽屉原理。

把m个东西任意分放进n个空抽屉里(mn),那么一定有一个抽屉中放进了至少2个东西。

由于一年最多有366天,因此在367人中至少有2人出生在同月同日。这相当于把367个东西放入366个抽屉,至少有2个东西在同一抽屉里。

运用到了数学的抽屉原理。

2、猫的面积:

冬天,猫睡觉时总是把身体抱成一个球形,是因为这样身体散发的热量最少。

在数学中,体积一定,表面积最小的物体是球体。

猫缩成一个球体,可以减小和外界接触的面积,降低热交换的速度,减少热量损失的速度,节省能量,保持体温。

运用到了数学的面积学。

3、四叶草叫“幸运草 ”:

三叶草,学名苜蓿草,是多年生草本植物,一般只有三片小叶子,叶形呈心形状,叶心较深色的部分亦是心形。

四叶草是由三叶草基因突变而产生的,它只占其中的十万分之一。也就说在十万株苜蓿草中,你可能只会发现一株是‘四叶草’,因为机率太小。因此“四叶草”是国际公认为幸运的象征。

运用到了数学的概率学。

4、车轮都是圆的而不是其他形状:

圆的中心叫圆心,圆上任何一点到圆心的距离都是相等的。把车轮做成圆形,车轴在圆心上,当车轮在地面滚动时,车轴离地面的距离,总是等于车轮半径。

因此,车里坐的人,就能平稳地被车子拉着走。假如车轮变了形,不成圆形了,轮上高一块低一块,到轴的距离不相等了,车就不会再平稳。

运用到了数学的圆心知识。

5、风扇的叶片都是奇数:

这是因为奇数的叶片组合能比偶数的叶片组合带来更多的性能优势。

如果一旦叶片数量为偶数片设计,并形成对称的排列方式的话,那么不但使得风扇自身的平衡性难以调整,而且容易使风扇在高速转时产生更多的共振,从而导致叶片无法长时间承受共振产生的疲劳,最终出现叶片断裂等情况。

因此,轴流风扇的设计多为不对称的奇数片叶片设计。

同样的设计理念在日常使用的电风扇或螺旋桨直升飞机的设计中都有体现。如果风扇是三叶结构,叶片制作较宽且叶片根部较强,各个部位的密度的等需均匀;如果为五叶结构,叶片较窄一些,厚度、强度也相对较低。

运用到了数学的奇偶数概念。

相关推荐

网友评论

  • (*)

最新评论

  • 访客 2022-07-16 08:24:53 回复

    函数与方程      1结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。      2根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。      (6)函数模型及其应用      1利用

    1
  • 访客 2022-07-16 12:26:36 回复

          (6)函数模型及其应用      1利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。      2收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用

    2
  • 访客 2022-07-16 08:27:23 回复

    2个东西在同一抽屉里。运用到了数学的抽屉原理。2、猫的面积:冬天,猫睡觉时总是把身体抱成一个球形,是因为这样身体散发的热量最少。在数学中,体积一定,表面积最小的物体是球体。猫缩成一个球体,可以减小和外界接触的面积,降低热交换的速度,减少热量损失的

    3
  • 访客 2022-07-16 05:56:55 回复

    触的面积,降低热交换的速度,减少热量损失的速度,节省能量,保持体温。运用到了数学的面积学。3、四叶草叫“幸运草 ”:三叶草,学名苜蓿草,是多年生草本植物,一般只有三片小叶子,叶形呈心形状,叶心较深色的部分亦是心形。四叶

    4